PII: S0040-4020(97)00905-8

Reactions of Alkylidenephosphoranes with Symmetrically Substituted p-Quinones

Wafaa M. Abdou, *a Monier A. E. Salem and Ashraf A. Sediek

^aNational Research Centre, Dokki, Cairo, Egypt ^bDepartment of Chemistry, Ain Shams University, Cairo, Egypt

Abstract: The reaction of p-quinone 1 with ylides 2a and 2b afforded the corresponding phosphonium salts 8a,b, p-quinone-dimethanides 4a,b(Z) and 5a,b(E); substituted phenols 7a,b(Z and E) and coumarin-derivative 11 (only with 2a). The reaction of 1 with ylide 2c gave, besides 4c, 5c and 8c, hydro-quinone[1]cyclobutene 16 and the Diels-Alder product 17. Reactions of 1 with 2d and 3 (salts) in the presence of sodium alkoxide yielded through preferred attack on the nitrile function, azo-22 and bisimino-24 compounds, respectively. © 1997 Published by Elsevier Science Ltd.

INTRODUCTION

Although an abundance of studies¹⁻³ dealing with the application of Wittig reagents on *o*-quinones have been performed whereas they take remarkable interesting courses, little is known about *p*-quinones.^{4,5} In the area of substituted *p*-quinones, only one study preludes to this approach. This concerns the chemical behaviour of 2-anilino-1,4-naphthoquinone and 2,3,5,6-tetrachlorobenzoquinone toward stabilized phosphorus ylides.⁵ The results showed that there is no effect for the ring-site substituents (e.g., Cl) on the reaction products.⁵

NC Cl
$$Ph_3P=CHCOR$$
 $Ph_3P=C \\ C_6H_5$ C_6H_5 C_6H_5

What we report here is the interaction of symmetrically substituted p-quinone: 2,3-dichloro-5,6-dic-yanobenzoquinone (DDQ, 1) and several different alkylidenephosphoranes 2a-d and 3. The study was under-

^{*} To receive any correspondence

taken to focus on the factors important in determining the course of our Wittig reaction such as: (1) the nature of the carbanion substituents, (2) the nature of the ring substituents, and (3) the reaction conditions, the knowledge of which should prove useful in interpreting mechanisms of nucleophilic displacement reaction of substituted *p*-quinones.

RESULTS AND DISCUSSION

Reaction of 1 and phosphorus ylides 2a,b.

Treatment of the readily available p-quinone (DDQ, 1) with methoxycarbonylmethylenetriphenylphosphorane 2a (2.3 mol equiv.) in toluene at room temperature for ~18 h gave, the corresponding phosphonium salt 8a (20%), the dimethanides 4a (Z, 16%), 5a (E, 9%) and the coumarin derivative 11 (12%) along with the substituted phenols 7a (Z&E; 21%). An interesting feature of the reaction is the development of a deep red colour which fades to pale yellow on standing.

The structure of the isolated products 4a, 5a, 7a, 8a and 11 were in accord with the elemental analyses, molecular weight measurements (MS) and the spectral data. The suggested *cis*- and *trans*- configurations for the isolated diolefins 4a (Z) and 5a (E) although not established with certainty, are supported by the recorded ¹H-NMR chemical shifts and melting point measurements. The determined chemical shifts of methoxyl groups and olefinic protons in the recorded ¹H-NMR spectra are 3.56, 3.59 and 6.2 ppm for 4a, mp 268 °C; 3.45, 3.5 and 6.18 ppm for compound 5a, mp 248 °C. In all cases the higher down field of the two chemical shifts and the higher melting point observed for the isomer suggested as *cis* isomer is greater than those of the corresponding isomer, suggested as *trans*, in agreement with literature.⁶

Likewise, the yellow crystalline product of the substituted phenols 7a was found to be a mixture of (E) and (Z)- configurations. The two isomers were supported by the recorded ¹H-NMR spectrum of the isomeric mixture. The major component of the two isomers was considered as 7aA and the minor 7aB which were found in the ratio 2:1. The appearance of the chemical shift signals of methoxyl groups and vinyl proton of 7aB (3.99(br.), 7.58 ppm) at a down field higher than those of 7aA (3.92(br.), 7.38 ppm). Dimethyl (2,3-dichloro-5,6-dicyano-4-hydroxyphenyl) fumarate 7aA (11%) is the only isomer (E) isolated in a pure form by fractional crystallization from methylene dichloride.

Next, coumarin structure 11 was attested by the following evidence: its IR spectrum revealed the presence of two strong absorption bands at 1740 and 1765 cm⁻¹ denoting the presence of carbonyl-ester and a coumarin-carbonyl having C-H grouping.^{7a} These two C=O groups were also attested by signals at δ 174.7 and 168.4 ppm in its ¹³C-NMR⁷ spectrum. Meanwhile, the presence of C(O)OCH₃ group in 11 was supported by a singlet at δ _H 3.32 (3H) as well as by a singlet at δ _C 51.82 ppm in its NMR spectrum.

The structure of the phosphonium salt 8 is elucidated by ¹H- and ³¹P-NMR spectroscopy. Its ³¹P-NMR spectrum shows a chemical shift δ 13.3 ppm which indicates a high contribution of the zwitterionic form⁸. On

NC CH-COR
$$\uparrow$$
 PPh₃ Cl toluene NC \uparrow CCOR \uparrow PPh₃ ArCHO \uparrow NC \uparrow CCOR \uparrow CHAr Cl \uparrow NC \uparrow \uparrow

the other hand, the exocyclic methine proton appeared at δ 8.15 ppm and showed a P-H coupling constant $^2J_{HP}$ = 18.3 Hz. The phosphonium salt 8a was converted readily into the parallel ylide 9 upon heating under reflux in toluene for 15 h. On treating 9 with p-nitrobenzaldehyde, the normal Wittig product 10 was obtained. On the other hand, treating 8a with Na₂CO₃ (15%), yielded the expected alkylated hydroquinone 12 (eqn. 1).

$$8a \xrightarrow{\text{Na}_2\text{CO}_3} \text{NC} \xrightarrow{\text{CH}_2\text{COOCH}_3} \text{Cl}$$

$$12 \text{OH}$$

$$(1)$$

By a similar treatment of 1 with ethoxycarbonylmethylenetriphenylphosphorane 2b the corresponding phosphonium salt 8b, the dimethanides 4b (Z) and 5b (E) were obtained accompanied with the substituted phenols 7b. Likewise with 2a, diethyl fumarate derivative 7bA is the only isomer isolated in a pure form. Moreover, the parallel coumarin-derivative has not hitherto been observed. The identification of the products was proved by combusion analysis, mass and NMR spectroscopy as well as by analogy with 4a, 5a,7a, and 8a.

The results of the above reaction (1+2a,b) allow interesting conclusions to be drawn. Thus, considering the earlier report,⁵ we were able to isolate products 7a,b analogous with those of Bestmann and Lang, but with 4, 5, 8 and 11 we have isolated different condensed products.

A possible mechanism for the formation of the isolated products 4, 5, 7, 8a,b and 11 from the reaction of DDQ 1 and phosphorus ylides 2a,b can be assumed to follow the series of reactions shown in Scheme 1 which implies that two positions in 1 are susceptible to nucleophilic attack: the aryl carbonyls and the ring-site chlorine. The initial nucleophilic attack by the carbanion center in 2a on the aryl carbonyl in 1 yields the p-quinonemethanide 3a, which further reacts with a second ylide 2a in two different ways affording finally compounds 4a, 5a, 7a, and 11. Wittig reaction of aryl-carbonyl of 3a with 2a gives the dimethanide products 4a (Z) and 5a (E). Trapping of 3a in Michael type addition of 2a yields the phenoxy intermediate 6a. Intramolecular hydrogen transylidation to the electron-rich center of the molecule affords 7a (E & Z), 1:6 addition, by triphenylphosphine elemination. Meanwhile, stabilization of 6a by expulsion of TPP and a molecule of methyl chloride leads to the formation of the coumarin-product 11. On the other hand, it is evident that the phosphonium salt 8 was formed by a direct nucleophilic replacement of the chlorine atom of DDQ 1 by the carbanion center of 2a. A similar chlorine replacement in DDQ 1 by tris(diethylamino)phosphine to give 13 was previously reported by Denney and Pendse.

$$\begin{array}{c}
O \\
NC \\
NC
\end{array}$$

$$\begin{array}{c}
P[N(C_2H_5)_2]_3\\
CI \\
O \\
13
\end{array}$$

The problem posed by the appearance of deep red colours in the early stages of the reaction of 1 with 2 is an interesting one. It is established that the benzene or toluene solutions exhibit strong paramagnetic resonance absorption. These phenomena are probably related to the formation of charge-transfere complexes $\{(A,D) \longleftrightarrow (A^-...^+D)\}$ between the electron-acceptor quinone (A) and the donor (D).

Reaction of p-Quinone 1 with Phosphorus Ylide 2c.

When the quinone 1 was added portionwise to a stirred toluene solution containing excess (up to 2.6 mol equiv.) of benzoylmethylenetriphenylphosphorane 2c and the reaction mixture was stirred for further 24 h at room temperature and then subjected to column chromatography, the corresponding phosphonium salt 8c (26 %), p-quinonedimethanides 4c (9%) and 5c (8%), along with hydroquinone[1]cyclobutene 16 (14%), and the coupling product 17 (17%) were, irrespectively (Scheme 2), obtained. Structures 8c, 4c and 5c were confirmed by analogy with 4a,b, 5a,b and 8a,b whilst the structure of 16 is proved by its infrared absorptions for hydroxyl, nitrile and carbonyl groups at 3430, 2220 and 1678 cm⁻¹, respectively; its ¹H-NMR absorptions at δ_H 4.35, 4.51 (2d, 2H, benzyl-H), 7.2-7.64 (m, 10H, aryl-H), 8.5 ppm (br., 2H, OH), and its ¹³C-NMR data are in accord with the proposal structure. Likewise, the coupling product 17 was confirmed by MS and ¹³C-NMR data.

Scheme 2

The formation of hydroquinone[1]cyclobutene 16 can be envisaged as proceeding through further nucleophilic attack by the carbanion center in 2c on the second chlorine atom of the phosphonium salt 8c, initially formed, to give the intermediate like 14 via displacement at halogen. Addition of elements of water (adventitious-moisture) to 14 affords the intermediate 15 accompanied by elemination of TPPO and hydrogen chloride. 16 then probably results from intermolecular cyclization of the crowded intermediate hydroquinone dimethane 15. Formation of quinone[1]cyclobutenes by the action of Wittig reagents on o-quinones has previously been reported. 4.11 Moreover, generation of the intermediates 14 and 15 is not surprising since it is reported that 2,3-dichloro-p-benzoquinone reacts readily with nucleophilic reagents to give, exclusively, 2,3-disubstituted products. 12

In view of the latter observations (1+2c), in contrast with 2a,b it is evident that in the formation of the isolated products, 4c, 5c, 8c, and 16 a preference for a displacement of a ring-chlorine took place to produce 8c and 16 (40%) rather than the olefination processes to produce 4c and 5c (17%).

Formation of the dimeric product 17 is in accordance with the Woodward-Hoffmann rules. ¹⁰ Thus the cyclization of the quinone dimer takes place intermoleculary by [2+2[cycloaddition through electron donor-acceptor interaction between C(Cl) in 1 with C(CN) of another molecule of the same quinone.

Reaction of p-Quinone 1 with Ylide 2d.

Treatment of 1 with formylmethylenetriphenylphosphorane 2d, prepared in *situ* from its chloride salt in the presence of NaOCH₃ in methyl alcohol gave the corresponding phosphorane 23 (23%) and the unexpected azo-derivative 22 (36%). No olefination product was observed. The structure 22 was deduced from correct elemental and mass spectral analyses, and its 1 H-NMR spectrum which revealed the presence of two singlets at δ 6.6 and 6.77 corresponding to the ethylenes =CH protons; two singlet at 3.41 and 3.88 assigned for the methoxyl groups while the aldehydic protons appeared at 8.85 and 9.18 ppm, and its IR spectrum showed the absence of CN absorption band and, instead, it showed new bands at 1576 and 850 cm⁻¹ attributed^{7a} to -N=N- and -C-N absorption, respectively. Although two isomers (E & Z), which can differ in the arrangement of the substituents on the carbon-carbon double bonds, could be assigned for 22, the data available do not allow a choice of which of these isomers has been isolated.

Obviously, the β-ketoalkylidenetriphenylphosphorane 2d which is less nucleophile comparatively to 2a-c

failed to undergo the olefination process, but instead it leads to the formation of phosphorus-nitrogen bond (Scheme 3). The mechanism of condensation of dinitrile 1 with 2d probably involves initial formation of an adduct such as 18 followed by ring closure to the dihydrophosphazete 19. Opening of the four-membered ring yields the iminophosphorane 20. Subsequent (or concurrent) transformations for the second nitrile group in an identical way, affords bis(iminophosphorane) 21. Compound 22 results through the extrusion of TPP and the ring closure of the crowded intermediate 21, as in the former case (see Scheme 2). However, O-alkylation processes, due to the methanolic medium, ¹³ compete with these transformations. Such a mechanism was previously reported for the reaction of activated acetylenes ¹⁴ and activated nitriles ¹⁵⁻¹⁷ with some phosphorus ylides. Moreover, this result is compatible with the assumption that the presence of the metal (Na) ion complexes with the nitrile increases the electrophilic reactivity of the carbon atom of the cyano group in the condensation reaction under consideration. ¹⁵

Reaction of p-Quinone 1 with Ylide 3.

The reaction of ylide 3 with DDQ 1 was studied in ethyl alcohol solution containing NaOC₂H₅ and the products obtained are depicted in Scheme 4. When *p*-quinone 1 was treated with diphenylmethylenetriphenylphosphorane 3 (2.5 mol equiv.) prepared in *situ* from its bromide salt in the presence of NaOC₂H₅ in ethyl alcohol, the reaction afforded the corresponding hydroquinone 25 (18%) and the bisimino-adduct 24 (48%). The structure of 24 is assignable from its analysis and spectral properties. The latter type of interaction between dinitrile derivative 1 and 3 and formation of bisimino-adduct 24 parallels the reaction course of phthalonitrile

derivative and nucleophilic reagents (e.g. NH₃) in the presence of a base.¹⁸ Moreover, it is of interest to notice that the behaviour of ylide 3 in the present study is remincent of its reaction with some o-quinones, whereby 1.3-dioxoles are likewise formed.^{19,20}

CONCLUSION

In conclusion, reactions of phosphorus ylides with substituted p-quinones provide an easy route for the preparation not only of the previously reported Wittig products, 4.5 but also of different adducts depending

on the nature of the ylide used and the reaction conditions. In addition, some concluding remarks should be cited: a) Wittig olefination has found preference with alkoxyalkylidenephosphoranes 2a,b while with β-ketoalkylidenephosphoranes 2c,d or methylenephosphoylide 3 afforded products in which site-ring attack has predominated, b) the findings, also support the assumption that the basic medium stimulate the course of the reaction at the N-functions (CN, NH, NO, NOH....); 15,17,21 c) finally the results offer a fertile area for future research in which Wittig reagents may be tailored to produce the desired outcome.

EXPERIMENTAL

Melting points are uncorrected. The IR spectra were recorded with a Perkin Elmer spectrophotometer. ¹H- and ¹³C-NMR spectra were recorded in CDCl₃ or d₆-DMSO as solvents on a Joel-270 MHz spectrometer, with SiMe₄ as internal standard. The ³¹P-NMR spectra were taken with a Varian CFT-20 (vs-external 85% H₃PO₄). Mass spectra were performed at 70 eV on a Shimadzu GCS-QP 1000 EX spectrometer provided with a data system. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, 1) was purchased from Aldrich Company.

Reaction of DDQ 1 and Phosphorus Ylides 2a. To a stirred solution of methoxycarbonylmethylenetriphenylphosphorane $2a^{22}$ (2.3 g, 7 mmol) in 30 ml dry toluene was added dropwise, within 30 minutes, a solution of quinone 1 (0.7 g, 3 mmol) in 20 ml toluene. The deeply red coloured reaction mixture was further stirred at room temperature for 18 h (TLC). The brown material that precipitated was collected, recrystallized from ethyl alcohol and identified as Z-dimethyl(2,3-dichloro-5,6-dicyano-1,4-dihydrobenzylidene) diacetate 4a (166 mg, 16 %), mp 265 °C. IR (KBr): 2235 (CN), 1735 (C=O, ester) 1622 cm⁻¹ (=CH). NMR (DMSO): δ_H 3.56, 3.59 (2s, 6H, 2CH₃), 6.2 ppm (s, 2H, =CH); δ_C 58.23, 60.72 (2 OCH₃), 116.9, 119.8 (2CN), 137.9, 138.4 (2 =CH) and 159.8, 161.8 ppm (2 C=O, ester). MS: m/z (%) = 339 (22) [M⁺].

```
C<sub>14</sub>H<sub>8</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>4</sub> (339.148) Calcd. C 49.58 H 2.37 Cl 20.91 N 8.26
Found: C 49.52 H 2.33 Cl 20.85 N 8.15
```

The filterate was separated by column chromatography on silica gel. Elution with hexane-ethyl acetate (8:2 \rightarrow 3:6) and further with pure ethyl acetate afforded four fractions. The first fraction gave yellow crystals of 3-chloro-5,6-dicyano-1,4-benzoquinone-2-methoxycarbonylmethylenetriphenylphosphonium chloride 8a (300 mg, 20 %), mp 248 °C (chloroform). IR (KBr): 2233 (CN), 1740 (C=O, ester), 1700, 1685 (C=O, aryl ketone), 1455, 980 (P-C, phenyl). NMR (CDCl₃): δ_H 3.2 (s, 3H, OCH₃), 8.15 (d, $^2J_{HP}$ = 18.3 Hz, 1H, -CH), 7.4-7.85 ppm (m, 15H, aryl-H); δ_P 13.3 ppm. MS: m/z (%) = 561 (100) [M⁺].

```
C<sub>29</sub>H<sub>19</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>4</sub>P (561.381) Calcd. C 62.04 H 3.41 Cl 12.63 N 4.99 P 5.52
Found: C 61.96 H 3.37 Cl 12.61 N 4.88 P 5.48
```

The second fraction gave straw yellow crystals of methyl(5,6-dicyano-7-hydroxy-8-chloro-2-oxo-2H-chromene-4yl) carboxylate 11 (112 mg, 12%) mp 148 °C (chloroform/hexane, 1:1 v/v). IR (KBr): 3445 (OH), 2233 (CN), 1765 (C=O, lactone) and 1740 (C=O, ester). NMR (CDCl₃): δ_H 3.38 (s, 3H, OCH₃), 7.52 (s, 1H, =CH) 8.7(br., 1H, OH); δ_C : 51.82 (OCH₃), 118.2, 120.1 (2CN), 151.4 (C-OH), 168.4 (C=O, ester), 174.7 ppm (C=O, lactone). MS: m/z (%) = 304 (100 %) [M⁺].

C₁₃H₅ClN₂O₅ (304.656) Calcd. C 51.25 H 1.65 Cl 11.64 N 9.2

The third fraction afforded the mixture of isomers 7a (230 mg, 21 %). The proportion 7aA: 7aB and the 1 H-NMR data of the isolated mixture were previously described. The mixture of the isomers was redissolved in CH₂Cl₂ and kept at -10 °C for 2 days. The solvent was decanted and the procedure was repeated with fresh CH₂Cl₂. Crystals that separated out were collected and proved to be the major isomer 7aA (119 mg, 11 %), mp 165 °C. IR (KBr): 3450 (OH), 2235 (CN), 1734, 1725 (2-C=O, esters), 1635 cm⁻¹ (-C=CH). NMR (CDCl₃): δ_{H} : 3.85, 3.94 (2s, 6H, 2OCH₃), 7.38 (s, 1H, =CH), 8.65 ppm (OH), MS: m/z (%) = 355 (10) [M⁺].

Found: C 51.21 H 1.59 Cl 11.58 N 9.15

C₁₄H₈Cl₂N₂O₅ (355.148): Calcd. C 47.34 H 2.27 Cl 19.96 N 7.89 Found: C 47.26 H 2.21 Cl 19.87 N 7.78

The fourth fraction yielded brown crystal of *E*-dimethyl(2,3-dichloro-5,6-dicyano-1,4-dihydrobenzylidene) diacetate **5a** (93 mg, 9%) mp 248 °C (CHCl₃). IR (KBr): 2233 (CN); 1728, 1738 (C=O, ester), 1620 (=CH). 1 HNMR (DMSO): δ 3.45, 3.5 (2s, 6H, 2 OCH₃), 6.18 ppm (s, 2H, 2 =CH). MS: m/z (%) = 339 (30) [M $^{+}$].

C₁₄H₈Cl₂N₂O₄ (339.148) Calcd. C 49.58 H 2.37 Cl 20.91 N 18.87 Found: C 49.53 H 2.34 Cl 20.86 N 18.82

Reaction of DDQ 1 and Phosphorus Ylide 2b. The reaction between quinone 1 (0.7 g, 3 mmol) and ethoxycarbonylmethylenetriphenylphosphorane 2b (2.4 g, 7 mmol) in dry toluene (50 ml) was carried out and the reaction mixture was worked up according to the above described procedure for ylide 2a. No precipitate was observed in the product mixture. After removal of the solvent, the residue was chromatographed on silica gel with hexane-CHCl₃ (7:3→0:10 v/v) and further with pure ethyl acetate and at last with acetone to give four fractions. The first fraction afforded the mixture of diastereomers 7b A&B (318 mg, 27 %). (E)- and (Z)- configurations shown only by ¹H-NMR whereby they present in ratio 3:2. Likewise with 7a, fractional crystallization from CH₂Cl₂ afforded a pure sample of the major isomer 7bA as yellow crystals (118, 10 %), mp 152 °C. IR (KBr): 3440 (OH), 2227 (CN), 1678 cm⁻¹ (C=O, ester). ¹H-NMR (CDCl₃): δ_H 1.42, 1.55 (2t, J_{HH}=4 Hz, 6H, 2CH₃); 4.3, 4.46 (2q, J_{HH}=4 Hz, 4H, 2CH₂); 5.35 (s, 1H, = CH), 9.8 ppm (s, 1H, OH). MS: m/z (%) = 383(24) [M⁺].

C₁₆H₁₂Cl₂N₂O₅ (383.2) Calcd. C 50.15 H 3.15 Cl 18.5 N 7.31 Found: C 49.93 H 3.08 Cl 18.33 N 7.26 The minor isomer diethyl (2,3-dichloro-5,6-dicyano-4-hydroxy-phenyl-1yl) maleate 7bB could not be isolated in a pure form. Its 1 H-NMR (shown in the spectrum of the isomeric mixture), δ_{H} 1.48, 1.67 (2t, 6H, 2CH₃); 4.6, 4.68 (2q, 4H, 2CH₂); 5.66 (s, 1H, =CH), 9.8 ppm (s, 1H, OH).

The second fraction gave a yellow crystals of 3-chloro-5,6-dicyano-1,4-benzoquinone-2-ethoxycarbonyl-methylenetriphenylphosphonium chloride **8b** (319 mg, 18%), mp 240 $^{\circ}$ C (ethyl alcohol). IR (KBr): 2232 (CN); 1735 (C=O, ester), 1690 (C=O, aryl ketone), 1440 cm⁻¹ (P-C, phenyl). NMR (DMSO): δ_H 0.8 (t, J_{HH} =4 Hz, 3H, CH₃), 3.64 (q, J_{HH} =4 Hz, 2H, CH₂), 7.24-7.8 ppm (m, 16H, aryl-H & CH); δ_C 14.38 (CH₃), 59.66 (OCH₂),68.5 (d, J_{CP} =104 HZ, C-P), 117.3, 119.5 (2CN), 163.5 (C=O, ester), 176.4 ppm (C=O, aryl-ketone). MS: m/z(%) = 575 (100) [M⁺].

```
C<sub>30</sub>H<sub>21</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>4</sub>P (575.41) Calcd. C 62.62 H 3.68 Cl 12.32 N 4.87 P 5.38
Found: C 62.55 H 3.69 Cl 12.19 N 4.73 P 5.46
```

The third fraction (ethyl acetate) yielded brown crystals of *E*-diethyl(2,3-dichloro-5,6-dicyano-1,4-dihydrobenzylidene) diacetate **5b** (147 mg, 13 %), mp 258 °C (benzene). IR (KBr): 2220 (CN), 1680, 1695 (2C=O, ester), 1628 cm⁻¹ (br., =CH); NMR (DMSO): δ_H 1.24 (t, J_{HH} =3.6 Hz, 6H, 2CH₃),4.24 (q, J_{HH} =3.6 Hz, 4H, 2CH₂), 5.38 ppm (s, 2H, =CH). MS: m/z (%) = 367 (25) [M⁺].

```
C<sub>16</sub>H<sub>12</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>4</sub> (367.202) Calcd. C 52.33 H 3.3 Cl 19.31 N 7.63
Found: C 52.28 H 3.24 Cl 19.18 N 7.54
```

The fourth fraction (acetone) gave brown crystals of *Z*-diethyl (2,3-dichloro-5,6-dicyano-1,4-dihydrobenzylidene) diacetate **4b** (158 mg, 14%), mp 280 $^{\circ}$ C (benzene). IR (KBr): 2225 (CN), 1685, 1710 (2C=O, esters), 1625 (= CH); 1 H-NMR (DMSO): δ_{H} 1.28 (t, J_{HH} =3.6 HZ, 6H, 2CH₃), 4.28 (q, J_{HH} =3.6 Hz, 4H, CH₂), 6.94 ppm (s, 2H, =CH). MS: m/z (%) = (367) (22) [M $^{+}$].

```
C<sub>16</sub>H<sub>12</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>4</sub> (367.202) Calcd. C 52.33 H 3.3 Cl 19.31 N 7.63
Found: C 52.2 H 3.25 Cl 19.27 N 7.58
```

Alkaline Treatment of the Phosphonium Salt 8a. A mixture of 8a (0.5 g) and 25 ml Na₂CO₃ (15 % aq.) was heated under reflux for 10 h. The mixture was cooled, diluted with water (5 ml) and extracted with CHCl₃. The residue obtained on removal of CHCl₃ was boiled with light petroleum to afford on concentration 0.13 gm, mp 155 °C, shown to be TPPO. The insoluble portion (0.62 g, 75%) was recrystallized to give the substituted hydroquinone 12 as yellow crystals, mp 193 °C (chloroform). IR (KBr): 3435 (br., OH), 1710 cm⁻¹ (C=O, ester). ¹H-NMR (DMSO): δ 2.83 (s, 2H, CH₂), 3.84 (s, 3H, OCH₃), 9.35 (br., 2H, 2OH). MS: m/z (%) = 266 (33) [M⁺]

```
C<sub>11</sub>H<sub>7</sub>ClN<sub>2</sub>O<sub>4</sub> (266.65) Calcd. C 49.55 H 2.64 Cl 13.29 N 10.51
Found: C 49.49 H 2.57 Cl 13.16 N 10.38
```

Thermal Decomposition of Phosphonium Salt 8a. Compound 8a (0.7 g) was heated under reflux for 15 h in toluene solution (30 ml). The material that precipitated after concentration and cooling was filtered off and proved to be the new ylide 9 (0.55 g, 85%), mp 185 °C (benzene). IR (KBr): 2235 (CN), 1735 (C=O, ester), 1685 (C=O, aryl-ketone), 1550 cm⁻¹ (C=P). ¹H-NMR (CDCl₃): $\delta_{\rm H}$ 3.35 (s, 3H, CH₃), 7.35-7.82 ppm (m, 15H, aryl-H). MS: m/z (%) = 524 (100) [M⁺].

```
C<sub>29</sub>H<sub>18</sub>ClN<sub>2</sub>O<sub>4</sub>P (524.92) Calcd.. C 66.35 H 3.45 Cl 6.75 N 5.34 P 5.9
Found: C 66.23 H 3.37 Cl 6.67 N 5.28 P 5.77
```

Wittig Reaction of the Produced Ylide 9. To a solution of 9 (0.5 g, 0.9 mmol) in ethyl acetate (30 ml) containing triethylamine (1.3 mmol), p-nitrobenzaldehyde (0.19 g, 1.3 mmol) was added. The reaction mixture was refluxed for 15 h. The solvent evaporated. Extraction of the residual substance with hot petroleum gave on cooling TPPO, mp 155 °C. Crystallization of the residue from acetone yielded the exocyclic olefin 10 (0.2 g, 62%), mp 220 °C (CHCl₃-Et₂O). IR (KBr): 2233 (CN), 1725 (C=O,ester), 1685 (C=O,aryl ketone), 1618 cm⁻¹ (=CH). ¹H-NMR (CHCl₃): δ 3.76 (s, 3H, CH₃), 5.85 (s, 1H, =CH), 7.45-7.82 (m, 4H, aryl-H). MS: m/z (%) = 397 (24) [M⁺].

```
C<sub>18</sub>H<sub>8</sub>ClN<sub>3</sub>O<sub>6</sub> (397.742) Calcd. C 54.35 H 2.03 Cl 8.91 N 10.56
Found: C 54.24 H 1.95 Cl 8.83 N 10.5
```

Reaction of DDQ 1 and Phosphorus Ylide 2c. To a stirred suspension of benzoylmethylenetriphenylphosphorane 2c²³ (3 g, 7.9 mmol) in toluene (50 ml), was added portionwise quinone 1 (0.7 g, 3 mmol) and the reaction mixture was left at r.t. under stirring for 24 h. Working up the product mixture as described with 2b afforded 17, 8c, 16, 5c and 4c, respectively.

The coupling product 17 was eluted with hexane/chloroform (8:2 v/v) as yellow crystals (126 mg, 17 %), mp 228 °C (CH₂Cl₂). IR (KBr): 2233 (CN), 1685 cm⁻¹ (C=O). ¹³C-NMR (DMSO): $\delta_{\rm C}$ 42.77 44.76, 49.32, 51.85 (cyclobutene-C), 117.32, 119.55 (CN); 171.35, (C=O, aryl-ketones). MS: m/z (%) = 454 (100) [M⁺].

```
C<sub>16</sub>Cl<sub>4</sub>N<sub>4</sub>O<sub>4</sub> (454.136) Calcd. C 42.32 Cl 31.23 N 12.34
Found: C 42.30 Cl 31.21 N 12.29
```

The phosphonium salt **8c** was eluted with hexane/CHCl₃ (6:4 v/v) as yellow crystals (486 mg, 26 %), mp $^{\circ}$ C (toluene). IR (KBr): 2218 (CN), 1745, 1690 (C=O), 1440 cm⁻¹ (P-C, phenyl). NMR (DMSO): $\delta_{\rm H}$ 7.25-7.85 ppm (m,16H, aryl-H, C-H), $\delta_{\rm P}$ 15.6 ppm. MS: m/z (%) = 607 (100) [M⁺].

```
C<sub>34</sub>H<sub>21</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>3</sub>P (607.45) Calcd. C 67.23 H 3.38 Cl 11.67 N 4.61 P 5.1
Found: C 67.18 H 3.34 Cl 11.52 N 4.54 P 5.14
```

The hydroquinone[1]cyclobutene **16** was eluted with hexane/CHCl₃ (2:8 v/v) as yellow crystals (169 mg, 14 %), mp 185 °C (CH₂Cl₂/Et₂O 1:2 v/v). IR (KBr): 3430 (OH, br.), 2220 (CN), 1678 cm⁻¹ (C=O). NMR

(DMSO): $\delta_{\rm H}$ 4.35, 4.51 (2d, J_{HH}=4.5 Hz, CH-CH), 7.2-7.64 (m, 10 H, aryl-H); 8.5 ppm (br., 2H, 2OH); $\delta_{\rm C}$: 47.55, 49.84 (2C-COR); 184.4, 188.5 ppm (2C=O). MS: m/z (%) = 394 (100) [M⁺].

 $C_{24}H_{14}N_2O_4 \ (394.39) \qquad Calcd. \qquad C \ \ 73.09 \quad \ H \ 3.58 \quad \ N \ \ 7.1$

Found: C 72.96 H 3.46 N 7.05

E-1,4-Quinodimethane **5c** was eluted with chloroform as brown crystals (106 mg, 8 %), mp 292 °C (ethyl alcohol). IR (KBr): 2233 (CN), 1680 cm⁻¹ (br., COPh). ¹H-NMR (DMSO): $\delta_{\rm H}$ 7.25-8.23 ppm (m, aryl-H & =CH). MS: m/z (%) = 431 (45) [M⁺].

C₂₄H₁₂Cl₂N₂O₂ (431.29) Calcd. C 66.84 H 2.8 Cl 16.44 N 6.49

Found: C 66.78 H 2.73 Cl 16.37 N 6.36

Z-1,4-Quinodimethane **4c** was eluted with CHCl₃/AcOEt as brown crystals (119 mg, 9 %), mp 305°C (ethyl alcohol). IR (KBr): 2235 (CN), 1685 cm⁻¹ (br., C=O). ¹H-NMR (DMSO): δ 7.36-8.28 ppm (m, aryl-**H** & =C**H**). MS: m/z (%) = 431 (48) [M⁺].

C₂₄H₁₂Cl₂N₂O₂ (431.29) Calcd. C 66.84 H 2.8 Cl 16.44 N 6.49

Found: C 66.76 H 2.7 Cl 16.33 N 6.31

Reaction of DDQ 1 and Phosphorus Ylides 2d. Into a well dried three necked flask containing 0.3 g sodium metal dissolved in 50 ml absolute methyl alcohol, formylmethylenetriphenylphosphonium chloride²⁴ (2.7 g, 8 mmol) was added portionwise. The reaction mixture was stirred at room temperature for 1 h followed by addition of 1 (0.7 g, 3mmol) portionwise within 30 min. then kept under stirring for 24 h. The product mixture was concentrated to 20 ml, diluted with 20 ml distd. water, acidified with conc HCl and then extracted with two-100 portions of CHCl₃. The chloroform extracts were combined, backwashed with 100 ml of H_2O , dried over anhydrous MgSO₄, and evaporated *in vacuo* under reduced pressure. The residue was chromatographed on silica gel with hexane-chloroform (7:3 \rightarrow 1:9 v/v) to give compounds 23 and 22, respectively.

The phosphorane **23** was eluted first as yellow crystals (345 mg, 23 %), mp 165 $^{\circ}$ C (CH₃CN). IR (KBr): 2233 (CN), 1707 (C=O, CHO), 1690 (C=O, aryl-ketone), 1555 cm⁻¹ (C=P). NMR (DMSO): $\delta_{\rm H}$ 7.4-7.88 (m, 15H, aryl-H), 8.83 ppm (d, 3 J_{HP} = 8.5 Hz, 1H, CHO); $\delta_{\rm P}$ = 18.7 ppm. MS: m/z (%) = 494 (13) [M $^{+}$].

 $C_{28}H_{16}CIN_2O_3P$ (494.89) Calcd. C 67.95 H 3.26 Cl7.16 N 5.66 P 6.26

Found: C 67.84 H 3.22 Cl 7.3 N 5.5 P 6.34

The azo-product **22** was obtained as orange crystals (375 mg, 36 %), mp 135 $^{\circ}$ C (cyclohexane). IR (KBr): 1715 (C=O), 1576 (N=N), 850 cm⁻¹ (C-N). 1 H-NMR (CDCl₃): δ_{H} 3.41, 3.88 (2s, 6H, OC**H**₃), 6.6, 6.77 (2d, J_{HH} = 4 Hz, 2H, =C**H**); 8.85, 9.18 ppm (2d, J_{HH} = 4 Hz, 2H, C**H**O). MS: m/z (%) = 341 (20) [M⁺].

C₁₄H₁₉Cl₂N₂O₄ (341.16) Calcd. C 49.29 H 2.95 Cl 20.78 N 8.21

Found: C 49.25 H 2.78 Cl 20.66 N 8.1

Reaction of DDQ 1 and Phosphorus Ylide 3. A mixture of 1 and diphenylmethylenephosphonium bromide²⁵ in ethyl alcohol containing sodium metal whereas the procedure and the working up are the same (with 2d), using the same amounts. The product residue was chromatographed with hexane-ethyl acetate whereby elution with pure ethyl acetate afforded two fractions.

The first fraction gave hydroquinone 25 (127 mg, 18 %) mp 262-264 °C (dil. ethanol) (lit. 22 265 °C).

The second fraction yielded brown crystals of **24** (650 mg, 48 %), mp 272 °C (toluene). IR (KBr): 1330 (NH, weak), 1622 cm⁻¹ (C=NH). ¹H-NMR (CDCl₃/DMSO): $\delta_{\rm H}$ 0.78, 1.55 (2t, $J_{\rm HH}$ = 4.5 Hz, 6H, 2-CH₃); 3.4, 3.62 (2q, $J_{\rm HH}$ = 4.5 Hz, 4H, 2OCH₂), 7.2-7.75 ppm (m, 12H, aryl-H & 2NH). MS: m/z (%) = 441 (8) [M⁺].

C₂₄H₂₂Cl₂N₂O₂ (441.37) Calcd. C 61.31 H 5.02 Cl 16.06 N 7.25

Found: C 61.25 H 4.97 Cl 15.93 N 7.1

ACKNOWLEDGEMENT

Thanks are due to Prof. Dr. R. Neidlein and Dr. W. Kramer (Pharmazeutisch Chemisches Institut, Heidelberg, Germany) for recording of some NMR spectra.

REFERENCES

- For a brief review see: Cadogan, J. I. G. Organophosphorus Reagents In Organic Synthesis, London, Academic Press, 1979, chapter 4.
- Johnson, A. Wm. Ylid Chemistry In Organic Chemistry, A series of Monographs, Edited by Blomquist, A. T., London, Academic Press, 1991.
- Trippett, S. Organophosphorus Chemistry, A Special Periodical Reports, The Chemical Society, Burlington House, London, WIV OBN, 1975-1983.
- 4. Sullivan, W. W.; Ullman, D.; Shechter, H. Tetrahedron Lett. 1969, 457.
- 5. Bestmann, H. J.; Lang, H. J. Tetrahedron Lett. 1969, 2101.
- Desimoni, G.; Astolfi, L.; Cambieri, M.; Gamb, A.; Tacconi, Q. Tetrahedron, 1973, 29, 2627; Aruduini,
 A.; Bosi, A.; Pochini, A.; Ungaro, R. ibid. 1985, 41, 3095.
- a) Silverstein, R. M.; Bassler, G. C.; Morril, T. C. Spectroscopic Identification of Organic Compounds, Wiley Inc., New York, 1981, b) Levy, G. C.; Lichter, R. L.; Nelson, G. L. Eds. Carbon 13 Nuclear Magnetic Resonance Spectroscopy; John Wiley and Sons New York U.S A., 1980.
- 8. Emsley, J.; Hall, D. The Chemistry of Phosphorus, John Wiley and Sons, New York, N. J., 1976, chapter 3.
- 9. Denney, D. B.; Pendse, A. D. Phosphorus and Sulfur, 1978, 5, 249.

- 10. March, J. Ed. Advanced Organic Chemistry; Reactions, Mechanisms and Structure, 3rd Editn., John Wiley and Sons, Inc. New York, 1985, chapters 15 and 16.
- 11. Abdou, W. M.; Ganoub, N. A. F.; Abdel-Rahman, N. M. Phosphorus and Sulfur, 1991, 61, 91.
- 12. VanAllan, J. A.; Reynolds, G. A. J. Org. Chem. 1963, 28, 1019.
- 13. Nicolaides, D. N; Balouctsi, C. B.; Litinas, K. E.; Xenikaki, E. M.; Mentzafos, D.; Terzis, A. J. Chem. Res. (S) 1993, 108; (M) 826; Nicolaides, D. N.; Adamopoulos, S. G.; Lefkaditis, D. A.; Litinas, K. E.; Taranili, P. V.; J. Chem. Soc. Perkin Trans. 1, 1992, 283.
- Bestmann, H. J.; Rothe, O. Angew. Chem. 1964, 76,569; Hendrickson, J. B.; Hall, C.; Rees, R.; Templeton, J. F. J. Org. Chem. 1965, 30, 3312.
- 15. Barnhardt, R. G., Jr.; McEwen, W. E. J. Am. Chem. Soc. 1965, 30, 3312.
- 16. Ciganek, E. J. Org. Chem. 1970, 35, 3631.
- 17. Abdou, W. M.; Ganoub, N. A. F. Phosphorus and Sulfur, 1995, 105, 63.
- 18. Dabak, S.; Bekaroglu, O. J. J. Chem. Research (M), 1997, 152; ibid. J. Chem. Research (S), 1997, 8.
- 19. Sidky, M. M.; Boulos, L. S. Phosphorus and Sulfur, 1984, 19, 27.
- 20. Abdou, W. M. Phosphorus and Sulfur, 1992, 66, 79.
- 21. Abdou, W. M.; Ganoub, N. A. F.; Mohamed, A. A. Heterocyclic (Comm.), 1997, 3, 57.
- 22. Kappe, Th.; Lender, E.; Ziegler, E. Monatsh. Chem. 1968. 99, 2157.
- 23. Bestmann, H. J.; Kortzer, O. Chem. Ber. 1962, 95, 1984.
- 24. Trippet, S.; Walker, D. M. Chem. & Ind. 1960, 202.
- 25. Theile, J.; Günther, F. Leibigs Ann. Chem. 1907, 349, 55.

(Received in UK 12 May 1997; revised 6 August 1997; accepted 7 August 1997)